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ABSTRACT  
Clinical attrition is about 30% from failure of drug candidates due to toxic side effects, increasing the drug development 
costs significantly and slowing down the drug discovery process. This partly originates from the fact that the animal 
models do not accurately represent human physiology. Hence there is a clear unmet need for developing drug toxicity 
assays using human-based models that are complementary to traditional animal models before starting expensive clinical 
trials. Organ-on-a-chip techniques developed in recent years have generated a variety of human organ models mimicking 
different human physiological conditions. However, it is extremely challenging to monitor the transient and long-term 
response of the organ models to drug treatments during drug toxicity tests. First, when an organ-on-a-chip model 
interacts with drugs, a certain amount of protein molecules may be released into the medium due to certain drug effects, 
but the amount of the the protein molecules is limited, since the organ tissue grown inside microfluidic bioreactors have 
minimum volume. Second, traditional fluorescence techniques cannot be utilized for real-time monitoring of the 
concentration of the protein molecules, because the protein molecules are continuously secreted from the tissue and it is 
practically impossible to achieve fluorescence labeling in the dynamically changing environment. Therefore, direct 
measurements of the secreted protein molecules with a label-free approach is strongly desired for organs-on-a-chip 
applications. In this paper, we report the development of a photonic crystal-based biosensor for label-free assays of 
secreted protein molecules from a liver-on-a-chip model. Ultrahigh detection sensitivity and specificity have been 
demonstrated. 
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1. INTRODUCTION  
Failure of drug candidates during clinical trials, late in the development pipeline, generates immense costs to the 
pharmaceutical industry and slows down the drug development process. Toxic side effects of the drug candidates result 
in about 30% of this clinical attrition 1. These failures partly result from the ineffectiveness of the animal models where 
they fail to accurately represent human physiology 2, 3, 4. Hence there is a clear unmet need for human-cells based models 
to complement traditional animal models for drug toxicity assays before the start of expensive clinical trials. 

The latest developments in tissue engineering, biomaterials and microfluidics research have enabled the development of 
microbioreactors that can grow human tissues in environments mimicking living systems 5, 6. These organ-on-a-chip 
platforms present models allowing a more biomimetic human-cells based drug toxicity testing 7, 8, 9. However, a couple of 
challenges arise when monitoring the transient and long-term response of tissues to drugs in a microbioreactor. The first 
challenge lies in the miniaturization of the organ/tissue grown using the organ-on-a-chip technique. The miniaturization 
of organoids reduces the amount of protein molecules and other biomarkers released from the tissue; resulting in the 
need for a monitoring technique with a high sensitivity and requiring only a small sample volume. The second challenge 
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Figure 2. PC-TIR sensor: (a) Photonic crystal structure with open cavity. (b) Schematic diagram of a PC-TIR experimental 

setup with image of resonant dark lines captured by the CCD camera. 

2.3 Functionalization of the PC-TIR sensor 

To allow biomolecular immobilization, 2% (v/v) 3-aminopropyltiethoxysilane (APTES) in ethanol was flowed across the 
sensor surface for 25 minutes, followed by a 40 minute ethanol wash and drying overnight. The sensor was then 
functionalized for 20 minutes with 50 mM goat anti-human albumin in phosphate buffered saline (PBS). This was 
followed by 20 minutes of 3x diluted steelhead salmon serum (SEA) in PBS to block possible nonspecific binding sites. 

2.4 Binding assays with the PC-TIR sensor 

Samples were injected into the channels for 20 minutes followed by a PBS wash, while images were recorded using a 
CCD camera every 40 seconds. 

3. MEASUREMENTS 
An image was taken as a reference from an empty channel for the purpose of removing the background noise. To 
determine the position of each dark line, each channel was split into 3 horizontal segments, whose intensities were 
vertically summed and then fitted to a Lorentzian function. For each channel, the displacement of the dark line in each 
segment was used to find the dark line’s average displacement and standard deviations. The resonance shift was then 
measured as the difference in displacement of the dark line before and after the sample was flowed across the sensor. We 
flowed water through one of the channels and subtracted its resonance shift from the others to account for shifts due to 
changes in environmental factors like temperature. 

 
Figure 3. Light intensity profile of a channel after subtraction from the reference channel. The peak was the dark line in the 
channel image. To find the center of the dark line, the profile was fit to the Lorentzian function (equation 1). 
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5. CONCLUSIONS
A label-free biosensor for organ-on-a-chip drug toxicity assays has been successfully developed using a photonic crystal 
structure in a total internal reflection configuration. The open microcavity formed by this configuration allowed the 
sensor surface to be easily functionalized, was easily accessible by analytes, and simplified the fabrication of 
microfluidic channels. The label-free biosensor was able to monitor the transient and long-term response of 
microbioreactor tissues to drugs. The experimental results confirmed the possible use of a PC-TIR sensor in human-cells 
based organ-on-a-chip drug toxicity models in conjunction with the current animal models. 
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